Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains

نویسندگان

  • Timothée Masquelier
  • Rudy Guyonneau
  • Simon J. Thorpe
چکیده

Experimental studies have observed Long Term synaptic Potentiation (LTP) when a presynaptic neuron fires shortly before a postsynaptic neuron, and Long Term Depression (LTD) when the presynaptic neuron fires shortly after, a phenomenon known as Spike Timing Dependent Plasticity (STDP). When a neuron is presented successively with discrete volleys of input spikes STDP has been shown to learn 'early spike patterns', that is to concentrate synaptic weights on afferents that consistently fire early, with the result that the postsynaptic spike latency decreases, until it reaches a minimal and stable value. Here, we show that these results still stand in a continuous regime where afferents fire continuously with a constant population rate. As such, STDP is able to solve a very difficult computational problem: to localize a repeating spatio-temporal spike pattern embedded in equally dense 'distractor' spike trains. STDP thus enables some form of temporal coding, even in the absence of an explicit time reference. Given that the mechanism exposed here is simple and cheap it is hard to believe that the brain did not evolve to use it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Competitive STDP-Based Spike Pattern Learning

Recently it has been shown that a repeating arbitrary spatiotemporal spike pattern hidden in equally dense distracter spike trains can be robustly detected and learned by a single neuron equipped with spike-timing-dependent plasticity (STDP) (Masquelier, Guyonneau, & Thorpe, 2008). To be precise, the neuron becomes selective to successive coincidences of the pattern. Here we extend this scheme ...

متن کامل

An Improved Supervised Learning Algorithm Using Triplet-Based Spike-Timing-Dependent Plasticity

The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit arbitrary spike trains in response to given synaptic inputs. Recent years, the supervised learning algorithms based on synaptic plasticity have developed rapidly. As one of the most efficient supervised learning algorithms, the remote supervised method (ReSuMe) uses the conventional pair-ba...

متن کامل

Spike-timing-dependent synaptic plasticity: from single spikes to spike trains

We present a neurobiologically motivated model of a neuron with active dendrites and dynamic synapses, and a training algorithm which builds upon single spike-timing-dependent synaptic plasticity derived from neurophysiological evidence. We show that in the presence of a moderate level of noise, the plasticity rule can be extended from single to multiple presynaptic spikes and applied to effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008